主要功能
可測熒光誘導曲線(IC)并進行淬滅分析
可測光響應曲線(LC)和快速光曲線(RLC)
基于不同藻類在450nm,520nm,630nm,660nm的熒光激發(fā)光譜差異來計算和分析自然水體藻類成分(藍藻,綠藻,硅/甲藻),
測量藍藻,綠藻,硅/甲藻的葉綠素a濃度和計算總葉綠素a(Total Chla)濃度。
可測量水樣的下列光合指標活性:
光合效率和光合速率(相對電子傳遞速率)
藻類的潛在最大光合效率(“生長潛能”)
有害藻華(HABs)研究的理想工具
藻類的光保護能力
藻類耐受強光的能力
頂層菜單方便快速啟動常規(guī)測量,直觀顯示曲線動態(tài)進程
測量參數
Fo, Fm, Fv/Fm, F, Fm’, Fo’, Y(II)=ΔF/Fm’, qP, qN, NPQ, Y(NPQ), Y(NO), ETR, α,Ik,ETRmax
藍藻,綠藻,硅甲藻葉綠素a濃度和總葉綠素a濃度等
應用領域
測量野外自然水樣或實驗室培養(yǎng)的微藻樣品的光合作用,標準版是一臺超便攜的設備,在標準版的基礎上加配流通版樣品室和蠕動泵套件即可實現連續(xù)監(jiān)測。
WATER-PAM-II還搭載與了PHYTO-PAM-II類似的熒光激發(fā)光譜,基于不同藻類在450nm,520nm,630nm,660nm的熒光激發(fā)光譜差異來計算和分析自然水體藻類成分(藍藻,綠藻,硅甲藻),分別測量每個藻中類的葉綠素a濃度和計算總葉綠素a(Total Chla)濃度。
可應用于水生生物學、水域生態(tài)學、海洋學、湖沼學等領域,檢測限達0.1 μgChl/L??捎糜谟泻υ迦A(HABs)的早期預警。
主要技術參數
測量光源:藍光LED,450nm和紅光LED,630nm; 520和660 nm LED輔助藍藻、綠藻、硅/鉀藻分類
光化光源:藍色LED,450nm和紅光LED,630 nm
飽和脈沖光源:藍色LED,450nm和紅光LED,630 nm
遠紅光:遠紅光LED,發(fā)射峰730 nm
數據存儲:27000組飽和脈沖數據
供電:8節(jié)AA可充電電池,續(xù)航可達30小時,可滿足70000次Yield測量,8節(jié)備用電池
產地:德國 WALZ
參考文獻
WATER-PAM-II近期剛推出,以下列表為WATER-PAM文獻
數據來源:光合作用文獻 Endnote 數據庫,更新至 2021年 5月,數據庫總文獻數量超過 10000 篇
原始數據來源:Google Scholar
Chen, R.-S., et al. (2021). "Effects of Mn2+ on neutral lipid content, C4 pathway, and related gene expression in Phaeodactylum tricornutum." Journal of Applied Phycology.
Alekseev, A. A., et al. (2021). "Influence of mercury salts on the condition of algae as studied by fluorescence methods." 9th International Conference on Mathematical Modeling 2328(1): 050001.
Baho, D. L., et al. (2021). "Ecological Memory of Historical Contamination Influences the Response of Phytoplankton Communities." Ecosystems.
Bhagooli, R., et al. (2021). "Chlorophyll fluorescence – A tool to assess photosynthetic performance and stress photophysiology in symbiotic marine invertebrates and seaplants." Marine pollution bulletin 165: 112059.
Castro-Varela, P. A., et al. (2021). "Photobiological Effects on Biochemical Composition in Porphyridium cruentum (Rhodophyta) with a Biotechnological Application." n/a(n/a).
Gu, Z., et al. (2021). "Enhancement of nutrients removal and biomass accumulation of Chlorella vulgaris in pig manure anaerobic digestate effluent by the pretreatment of indigenous bacteria." Bioresource Technology 328: 124846.
Li, S., et al. (2021). "Exploring the potential of photosynthetic induction factor for the commercial production of fucoxanthin in Phaeodactylum tricornutum." Bioprocess and biosystems engineering.
Puig-Fàbregas, J., et al. (2021). "Evaluation of actin as a reference for quantitative gene expression studies in Emiliania huxleyi (Prymnesiophyceae) under ocean acidification conditions." Phycologia: 1-10.
Soleymani Robati, S. M., et al. (2021). "Increase in lipid productivity and photosynthetic activities during distillery wastewater decolorization by Chlorella vulgaris cultures." Applied Microbiology and Biotechnology.
Song, Y., et al. (2021). "Electrokinetic detection and separation of living algae in a microfluidic chip: implication for ship’s ballast water analysis." Environmental Science and Pollution Research.
Xi, Y., et al. (2021). "Photosynthetic profiling of a Dunaliella salina mutant DS240G-1 with improved β-carotene productivity induced by heavy ions irradiation2021." International Journal of Agricultural and Biological Engineering.
Xu, K., et al. (2021). "Toxic and protective mechanisms of cyanobacterium Synechocystis sp. in response to titanium dioxide nanoparticles." Environmental Pollution: 116508.
Zhao, L., et al. (2021). "Light modulates the effect of antibiotic norfloxacin on photosynthetic processes of Microcystis aeruginosa." Aquatic Toxicology 235: 105826.
Zhu, J., et al. (2021). "Bacteriophage therapy on the conchocelis of Pyropia haitanensis (Rhodophyta) infected by Vibrio mediterranei 117-T6." Aquaculture 531: 735853.