Plantarray植物高通量生理學(xué)特征監(jiān)測(cè)系統(tǒng)
一套高通量、以植物生理學(xué)為基礎(chǔ)的高精度表型系統(tǒng),可以完成整個(gè)植物生長(zhǎng)周期中不同環(huán)境下的SPAC因子的測(cè)量。
以色列Plant-DiTech公司的Plantarray監(jiān)測(cè)系統(tǒng)是一套高通量,以植物生理學(xué)為基礎(chǔ)的高精度表型系統(tǒng),可以完成整個(gè)植物生長(zhǎng)周期中不同環(huán)境下的SPAC(Soil-Plant-Atmosphere Continuum, 土壤植物大氣連續(xù)體)因子的測(cè)量。連續(xù)不間斷的獲取陣列內(nèi)所有植物的監(jiān)測(cè)數(shù)據(jù),實(shí)時(shí)監(jiān)控和及時(shí)調(diào)整每個(gè)培養(yǎng)容器中的土壤條件,包含土壤水分、鹽分。
Israeli Center of Research Excellence facility in Rehovot
>>Plantarray監(jiān)測(cè)系統(tǒng)的主要優(yōu)點(diǎn)<<
? 生理學(xué)特征的監(jiān)測(cè)和數(shù)據(jù)高通量分析,如生長(zhǎng)速率、蒸騰速率、水分利用率、氣孔導(dǎo)度等特征;
? 連續(xù)控制不同的土壤和水分環(huán)境(如干旱、鹽分或化學(xué)物質(zhì));
? 理想的實(shí)驗(yàn)平臺(tái):
? 全自動(dòng) | ? 均一檢測(cè) |
? 適用于不同類型植物 | ? 精確測(cè)量 |
? 非破壞性 | ? 實(shí)現(xiàn)隨機(jī)分組實(shí)驗(yàn)設(shè)計(jì) |
? 3-4周的實(shí)驗(yàn)相當(dāng)于4-6個(gè)月的人工工作;
? 操作簡(jiǎn)單,維護(hù)費(fèi)用幾可忽略;
? 靈活的設(shè)計(jì)能夠滿足任何溫室中不同方面的科學(xué)研究需求。
? 實(shí)時(shí)統(tǒng)計(jì)分析-為了數(shù)據(jù)的可靠快速分析,提供多階乘ANOVA或配對(duì)T檢驗(yàn);
? 實(shí)驗(yàn)?zāi)康?在實(shí)驗(yàn)運(yùn)行中為了確保處理的效果可以獲取最優(yōu)化的實(shí)驗(yàn)參數(shù);
? 快速定量選擇-提供植物對(duì)于不同環(huán)境需求生理反應(yīng)的評(píng)級(jí)和評(píng)分的簡(jiǎn)況;
? 復(fù)雜實(shí)驗(yàn)通過(guò)簡(jiǎn)要圖像呈現(xiàn)生理參數(shù)與環(huán)境條件的空間和時(shí)間關(guān)系,顯示趨勢(shì)、異常和比率。
>>Plantarray監(jiān)測(cè)系統(tǒng)應(yīng)用領(lǐng)域<<
? 非生物逆境脅迫研究,比如:干旱、淹水、營(yíng)養(yǎng)、有毒物質(zhì)等脅迫研究;
? 在農(nóng)作物、蔬菜、樹木、藥用植物、燃料作物等方面的育種研究;
? 根系的土壤穿透力、水通量研究;
? 生物激素與養(yǎng)分研究;
? 生理生態(tài)學(xué)研究等。
>>Plantarray監(jiān)測(cè)系統(tǒng)測(cè)量參數(shù)<<
? 直接測(cè)量特性:
? 重量 | ? 空氣濕度 |
? 空氣溫度 | ? 氣壓 |
? 輻射(PAR) | ? 土壤水分 |
? 土壤電導(dǎo)率 | ? 土壤溫度 |
? 日蒸騰 |
? 計(jì)算特性:
? 植物生物量增益 | ? 日蒸騰 |
? 水分利用效率 | ? 氣孔導(dǎo)度 |
? 抗脅迫因子 | ? 水分相對(duì)含量 |
? 根穿透力 | ? 根系水通量 |
? VPD |
>>參考文獻(xiàn)<<
Negin et. al., (2016) The advantages of functional phenotyping in pre-field screening for drought-tolerant crops. Functional Plant Biology DOI: 10.1071/FP16156.
Faber et. Al., (2016) Cytokinin activity increases stomatal density and transpiration rate in tomato. Journal of Experimental Botany DOI: 10.1093/jxb/erw398.
Halperin et. Al., (2016) High-throughput physiological phenotyping and screening system for the characterization of plant–environment interactions. The Plant Journal 10.1111/tpj.13425.
Xu et. al., (2015) Natural variation and gene regulatory basis for the responses of asparagus beans to soil drought. Frontiers in plant sciences DOI: 10.3389/fpls.2015.00891.
Lugassi et. al., (2015) Expression of Arabidopsis Hexokinase in Citrus Guard Cells Controls Stomatal Aperture and Reduces Transpiration. Frontiers in plant sciences DOI:10.3389/fpls.2015.01114.
Moshelion and Altman, (2015) Current challenges and future perspectives of plant and agricultural biotechnology. Trends in Biotechnology. 33, 337-342.
Moshelion et. al., (2014) Role of aquaporins in determining transpiration and photosynthesis in water-stressed plants: crop water-use efficiency, growth and yield. Plant Cell & Environment DOI: 10.1111/pce.12410.
Bedada et. al., (2014) Transcriptome sequencing of two wild barley (Hordeum spontaneum L.) ecotypes differentially adapted to drought stress reveals ecotype-specific transcripts. BMC Genomics DOI: 10.11861471-2164-15-995.
Tracy Lawson et. al., (2014) Mesophyll photosynthesis and guard cell metabolism impacts on stomatal behavior. New Phytologist DOI: 10.1111nph.12945.
Kelly et. al., (2014) Relationship between hexokinase and the aquaporin PIP1 in the regulation of photosynthesis and plant growth. PLoS One. 9 : DOI:10.1371/ journal.pone.0087888.
Kelly et. al., (2013) Hexokinase mediates stomatal closure. The Plant Journal 75, 977–988 DOI: 10.1111/tpj.12258.
Nir et. al., (2013) The Arabidopsis gibberellin methyl transferase 1 suppresses gibberellin activity, reduces whole-plant transpiration and promotes drought tolerance in transgenic tomato. Plant cell and Environment 37, 113–123.
Sade et. Al., (2012) Risk-taking plants: Anisohydric behavior as a stress-resistance trait. Plant Signaling & Behavior DOI org/10.4161/psb.20505.
Sade et. al., (2010) The Role of Tobacco Aquaporin1 in Improving Water Use Efficiency, Hydraulic Conductivity, and Yield Production Under Salt Stress. Plant Physiology 152:1-10.
Wallach et. al., (2010) Development of synchronized, autonomous, and self-regulated oscillations in transpiration rate of a whole tomato plant under water stress. Journal of Experimental Botany 61:3439–3449.
Sade et. al., (2009) Improving plant stress tolerance and yield production: is the tonoplast aquaporin SLTIP2;2 a key to isohydric to anisohydric conversion? New Phytologist. 181: 651–661.