一款有害藻華(HABs)研究的理想工具。
近日,德國WALZ公司在其網(wǎng)站上線了全新版的藻類葉綠素?zé)晒鈨xWATER-PAM-II,與其第一代WATER-PAM的主機檢測器分開不同,WATER-PAM-II將主機和檢測器巧妙的合二為一,整體設(shè)計更加緊湊,野外現(xiàn)場使用更加便攜。除此之外,WATER-PAM-II還同時搭載了藍(lán)色450nm和紅色630 nm的測量光、光化光、飽和脈沖以及730nm的遠(yuǎn)紅光。另外WATER-PAM-II還搭載與了PHYTO-PAM-II類似的激發(fā)光譜,基于不同藻類在450nm,520nm,630nm,660nm的熒光激發(fā)光譜差異來計算和分析自然水體藻類成分(藍(lán)藻,綠藻,硅甲藻),分別測量每個藻種類的葉綠素a濃度和計算總?cè)~綠素a濃度。一臺機器可以滿足更多種藻類或浮游植物的測量需求。
全新的WATER-PAM-II使用觸摸屏操作,其半透LED顯示屏在自然光下清晰可見。單機界面將常用的菜單做了頂層設(shè)計,這些菜單可以完成絕大部分常規(guī)測量,如慢速熒光誘導(dǎo)動力學(xué)曲線、快速光曲線、AL+Y程序測量。頂層菜單還可以實現(xiàn)數(shù)據(jù)查看,光強列表查看等。更多機器設(shè)置可以進入到PAM Settings,如機器設(shè)置,光源選擇,程序調(diào)用,傳感器激活,存儲記憶瀏覽,設(shè)備信息查看都非常簡潔明了。此外,WATER-PAM-II還可以通過USB接口實現(xiàn)與Windows系統(tǒng)計算機連接,使用WinControl-3軟件操作儀器。WinControl-3可以一鍵啟動慢速熒光誘導(dǎo)動力學(xué)曲線和暗弛豫并進行淬滅分析??梢詼y量快速光曲線(RLC)并選擇擬合方程得出擬合結(jié)果。可以記錄樣品葉綠素?zé)晒庾兓膭討B(tài)軌跡,繪制熒光參數(shù)的動態(tài)變化曲線,可以保存和導(dǎo)出數(shù)據(jù)報告。
全新的WATER-PAM-II使用8節(jié)AA充電電池(5號電池)供電,在不外接電源的情況下可進行長達(dá)1000次飽和脈沖分析;額外的備用電池組使得儀器可以在偏遠(yuǎn)地方進行長期研究。
全新的WATER-PAM-II可以選配流通樣品室,在外接蠕動泵的情況下實現(xiàn)長期連續(xù)測量。
藻類光合作用及藻類組分的相關(guān)參數(shù)
Fo, Fm, Fv/Fm, F, Fm’, Fo’, Y(II)=ΔF/Fm’, qP, qN, NPQ, Y(NPQ), Y(NO), ETR, α,Ik,ETRmax
藍(lán)藻,綠藻,硅甲藻葉綠素a濃度和總?cè)~綠素a濃度等
應(yīng)用領(lǐng)域
測量野外自然水樣或?qū)嶒炇遗囵B(yǎng)的微藻樣品的光合作用,標(biāo)準(zhǔn)版是一臺超便攜的設(shè)備,在標(biāo)準(zhǔn)版的基礎(chǔ)上加配流通版樣品室和蠕動泵套件即可實現(xiàn)連續(xù)監(jiān)測。
WATER-PAM-II還搭載與了PHYTO-PAM-II類似的熒光激發(fā)光譜,基于不同藻類在450nm,520nm,630nm,660nm的熒光激發(fā)光譜差異來計算和分析自然水體藻類成分(藍(lán)藻,綠藻,硅甲藻),分別測量每個藻中類的葉綠素a濃度和計算總?cè)~綠素a(Total Chla)濃度。
可應(yīng)用于水生生物學(xué)、水域生態(tài)學(xué)、海洋學(xué)、湖沼學(xué)等領(lǐng)域,檢測限達(dá)0.1 μgChl/L??捎糜谟泻υ迦A(HABs)的早期預(yù)警。
相關(guān)背景
1998年,德國WALZ公司設(shè)計并推出了高靈敏度調(diào)制葉綠素?zé)晒鈨xWATER-PAM用于測量水體中浮游植物的葉綠素?zé)晒?,研究藻類光合作用。在過去的二十多年時間里,使用WATER-PAM熒光儀發(fā)表的科研論文超過500多篇。
參考文獻
數(shù)據(jù)來源:光合作用文獻Endnote數(shù)據(jù)庫; 原始數(shù)據(jù)來源:Google Scholar
WATER-PAM-II近期剛推出,以下目錄為2021年使用WATER-PAM發(fā)表文獻列表
1. Alekseev, A. A., et al. (2021). "Influence of mercury salts on the condition of algae as studied by fluorescence methods." 9th International Conference on Mathematical Modeling 2328(1): 050001.
2. Baho, D. L., et al. (2021). "Ecological Memory of Historical Contamination Influences the Response of Phytoplankton Communities." Ecosystems.
3. Bhagooli, R., et al. (2021). "Chlorophyll fluorescence – A tool to assess photosynthetic performance and stress photophysiology in symbiotic marine invertebrates and seaplants." Marine pollution bulletin 165: 112059.
4. Castro-Varela, P. A., et al. (2021). "Photobiological Effects on Biochemical Composition in Porphyridium cruentum (Rhodophyta) with a Biotechnological Application." Photochemistry and Photobiology n/a(n/a).
5. Chen, R.-S., et al. (2021). "Effects of Mn2+ on neutral lipid content, C4 pathway, and related gene expression in Phaeodactylum tricornutum." Journal of Applied Phycology.
6. Gu, Z., et al. (2021). "Enhancement of nutrients removal and biomass accumulation of Chlorella vulgaris in pig manure anaerobic digestate effluent by the pretreatment of indigenous bacteria." Bioresource Technology 328: 124846.
7. Kennedy, F., et al. (2021). "Rapid changes in spectral composition after darkness influences nitric oxide, glucose and hydrogen peroxide production in the Antarctic diatom Fragilariopsis cylindrus." Polar Biology.
8. Li, S., et al. (2021). "Exploring the potential of photosynthetic induction factor for the commercial production of fucoxanthin in Phaeodactylum tricornutum." Bioprocess and biosystems engineering.
9. Li, X., et al. (2021). "Effects of periodical dehydration on biomass yield and biochemical composition of the edible red alga Pyropia yezoensis grown at different salinities." Algal Research 56: 102315.
10. Puig-Fàbregas, J., et al. (2021). "Evaluation of actin as a reference for quantitative gene expression studies in Emiliania huxleyi (Prymnesiophyceae) under ocean acidification conditions." Phycologia: 1-10.
11. Soleymani Robati, S. M., et al. (2021). "Increase in lipid productivity and photosynthetic activities during distillery wastewater decolorization by Chlorella vulgaris cultures." Applied Microbiology and Biotechnology.
12. Song, Y., et al. (2021). "Electrokinetic detection and separation of living algae in a microfluidic chip: implication for ship’s ballast water analysis." Environmental Science and Pollution Research.
13. Xi, Y., et al. (2021). "Photosynthetic profiling of a Dunaliella salina mutant DS240G-1 with improved β-carotene productivity induced by heavy ions irradiation2021." International Journal of Agricultural and Biological Engineering.
14. Xu, K., et al. (2021). "Toxic and protective mechanisms of cyanobacterium Synechocystis sp. in response to titanium dioxide nanoparticles." Environmental Pollution: 116508.
15. Zhao, L., et al. (2021). "Light modulates the effect of antibiotic norfloxacin on photosynthetic processes of Microcystis aeruginosa." Aquatic Toxicology 235: 105826.
16. Zhu, J., et al. (2021). "Bacteriophage therapy on the conchocelis of Pyropia haitanensis (Rhodophyta) infected by Vibrio mediterranei 117-T6." Aquaculture 531: 735853.
WALZ官網(wǎng)鏈接地址 | 澤泉科技官網(wǎng)鏈接地址 |