主要功能
單獨或同步測量葉綠素熒光和 P700
兩個光系統(tǒng)的誘導(dǎo)動力學(xué)曲線(包括快相和慢相)
兩個光系統(tǒng)的快速光曲線和光響應(yīng)曲線
淬滅分析、暗馳豫分析
典型的 P700 曲線測量
通過葉綠素熒光和 P700 的同步測量獲知兩個光系統(tǒng)的電子傳遞動力學(xué)、電子載體庫的大小、圍繞 PSI 的環(huán)式電子傳遞動力學(xué)等
測量參數(shù)
PS II參數(shù):Fo, Fm, F, Fm’, Fv/Fm, Y(II) 即 △F/Fm’, Fo’, qP, qL, qN, NPQ, Y(NPQ), Y(NO) 和 ETR(II) 等
PS I參數(shù):P700, Pm, Pm’, P700ox, Y(I), Y(ND), Y(NA) 和 ETR(I) 等
其他測量參數(shù):Post-Illumination(鼓包),PQ-Pool(PQ庫)等
應(yīng)用領(lǐng)域
特別適合于在野外現(xiàn)場進行深入的 PSII 和 PSI 活性測量,是植物生理學(xué)、植物生態(tài)學(xué)、農(nóng)學(xué)、林學(xué)、園藝學(xué)、植物逆境研究的強大助手。光纖版設(shè)計更輕便,便于攜帶,另外,光纖版尤其適合附著樣品,如苔蘚,地衣的樣品的原位測量。
主要技術(shù)參數(shù)
P700 雙波長測量光:LED,830 nm 和 875 nm
PSII 熒光測量光:LED,460 nm 或 620 nm
紅色光化光:LED陣列,635 nm;最大連續(xù)光強 4000 μmol m-2 s-1
藍色光化光:LED,460 nm;最大連續(xù)光強 500 μmol m-2 s-1
單周轉(zhuǎn)飽和閃光(ST):200000 μmol m-2 s-1,5~50 μs 可調(diào)
多周轉(zhuǎn)飽和閃光(MT):20000 μmol m-2 s-1,1~1000 ms 可調(diào)
遠紅光:720 nm
選購指南
一、高等植物葉片基本款
系統(tǒng)組成:光纖版主機,光纖,光適應(yīng)葉夾,暗適應(yīng)葉夾,軟件等
注意:便攜式光纖型雙通道調(diào)制葉綠素熒光儀光化光兼具紅光和藍光
Dual-PAM/F 基本款 |
二、懸浮樣品測量基本款
系統(tǒng)組成::通用型主機,光纖,懸浮液測量用樣品池,軟件等。
注意:選購懸浮樣品測量基本款時可以不選購光適應(yīng)葉夾,建議選配磁力攪拌器。
Dual-PAM/F 懸浮樣品測量基本款 |
同步測量 PSII(紅色)和 PSI(藍色) 的誘導(dǎo)曲線 | 同步測量 PSII(紅色)和 PSI(藍色) 的光響應(yīng)曲線 | 典型的 P700 測量曲線 |
打開飽和脈沖時葉綠素熒光信號(紅色) 和 P700(藍色)信號變化 | 以線性時間測量的熒光 快速動力學(xué)曲線 | 以對數(shù)時間測量的熒光 快速動力學(xué)曲線 |
三、其他可選附件
1,2060-B:擬南芥葉夾,60度角光適應(yīng)葉夾,與獨立微型光量子/溫度傳感器 2060-M 連用進行測量,特別適于測量擬南芥類小葉片。使用前提是需配置 2060-M。
2,2060-M:微型光量子/溫度傳感器,測量 PAR 和溫度,可連接 MINI-PAM 后獨立使用,多與 2060-B 結(jié)合使用。
3,MKS-2500:為 KS-2500 配置的磁力攪拌器,專為 KS-2500 配置,裝在 KS-2500 下方,帶動 KS-2500 內(nèi)部的轉(zhuǎn)子旋轉(zhuǎn),對液體樣品進行攪拌。
4,2030-B90:90 度角光纖適配器,安裝在 2030-B 或 2060-B 上,使光纖與樣品成 90 度角。
產(chǎn)地:德國WALZ
參考文獻
數(shù)據(jù)來源:光合作用文獻 Endnote 數(shù)據(jù)庫,更新至 2016 年 9 月,文獻數(shù)量超過 6000 篇
原始數(shù)據(jù)來源:Google Scholar
1. Chovancek, E., et al. (2021). "The different patterns of post-heat stress responses in wheat genotypes: the role of the transthylakoid proton gradient in efficient recovery of leaf photosynthetic capacity." Photosynth Res.
2. Grinberg, M. A., et al. (2021). "Effect of chronic β-radiation on long-distance electrical signals in wheat and their role in adaptation to heat stress." Environmental and Experimental Botany 184: 104378.
3. Huang, W., et al. (2021). "The water-water cycle is not a major alternative sink in fluctuating light at chilling temperature." Plant Science: 110828.
4. Méteignier, L.-V., et al. (2021). "Arabidopsis mTERF9 protein promotes chloroplast ribosomal assembly and translation by establishing ribonucleoprotein interactions in vivo." Nucleic Acids Research.
5. Wang, Q., et al. (2021). "Effects of sulfur limitation on nitrogen and sulfur uptake and lipid accumulation in Scenedesmus acuminatus." Journal of Applied Phycology.
6. Wang, Z., et al. (2021). "Characterization and functional analysis of phytoene synthase gene family in tobacco." BMC Plant Biology 21(1): 32.
7. Amstutz, C. L., et al. (2020). "An atypical short-chain dehydrogenase–reductase functions in the relaxation of photoprotective qH in Arabidopsis." Nature Plants 6(2): 154-166.
8. Bag, P., et al. (2020). "Direct energy transfer from photosystem II to photosystem I confers winter sustainability in Scots Pine." Nature communications 11(1): 6388.
9. Basso, L., et al. (2020). "Collaboration between NDH and KEA3 Allows Maximally Efficient Photosynthesis after a Long Dark Adaptation." Plant Physiology 184(4): 2078-2090.
10. Fréchette, E., et al. (2020). "Variation in the phenology of photosynthesis among eastern white pine provenances in response to warming." Global change biology n/a(n/a).
11. Fu, H.-Y., et al. (2020). "The availability of neither D2 nor CP43 limits the biogenesis of photosystem II in tobacco." Plant Physiology.
12. Galvis, V. C., et al. (2020). "H+ transport by K+ EXCHANGE ANTIPORTER3 promotes photosynthesis and growth in chloroplast ATP synthase mutants." Plant Physiology.
13. He, L., et al. (2020). "Primary Leaf-type Ferredoxin1 Participates in Photosynthetic Electron Transport and Carbon Assimilation in Rice." Plant Journal n/a(n/a).
14. Ishikawa, N., et al. (2020). "PsbQ-Like Protein 3 Functions as an Assembly Factor for the Chloroplast NADH Dehydrogenase-like Complex in Arabidopsis." Plant and Cell Physiology.
15. Kalra, I., et al. (2020). "Chlamydomonas sp. UWO 241 exhibits high cyclic electron flow and rewired metabolism under high salinity." Plant Physiology: pp.01280.02019.
16. Kusano, M., et al. (2020). "Cytosolic GLUTAMINE SYNTHETASE 1; 1 modulates metabolism and chloroplast development in roots." Plant Physiology.
17. Lee, K., et al. (2020). "Lack of FIBRILLIN6 in Arabidopsis thaliana affects light acclimation and sulfate metabolism." New Phytologist 225(4): 1715-1731.
18. Li, H., et al. (2020). "A rice chloroplast-localized ABC transporter ARG1 modulates cobalt and nickel homeostasis and contributes to photosynthetic capacity." New Phytologist n/a(n/a).
19. López-Calcagno, P. E., et al. (2020). "Stimulating photosynthetic processes increases productivity and water-use efficiency in the field." Nature Plants 6(8): 1054-1063.
20. Reiter, B., et al. (2020). "The Arabidopsis Protein CGL20 is Required for Plastid 50S Ribosome Biogenesis." Plant Physiology.
21. Sanz-Luque, E., et al. (2020). "Metabolic control of acclimation to nutrient deprivation dependent on polyphosphate synthesis." Science Advances 6(40): eabb5351.
22. Shinde, S., et al. (2020). "Glycogen Metabolism Supports Photosynthesis Start through the Oxidative Pentose Phosphate Pathway in Cyanobacteria." Plant Physiology 182(1): 507-517.
23. Storti, M., et al. (2020). "Regulation of electron transport is essential for photosystem I stability and plant growth." New Phytologist n/a(n/a).
24. Treves, H., et al. (2020). "Multi-omics reveals mechanisms of total resistance to extreme illumination of a desert alga." Nature Plants.
25. Yang, Q., et al. (2020). "Two dominant boreal conifers use contrasting mechanisms to reactivate photosynthesis in the spring." Nature communications 11(1): 1-12.
26. Zhang, C., et al. (2020). "Structural insights into NDH-1 mediated cyclic electron transfer." Nature communications 11(1): 888.